

Benefits of Rice Genome Sequencing

Rice Genomics Program

Bob Fjellstrom, Aaron Jackson, Melissa Jia USDA-ARS-DBNRRC, Stuttgart, AR

The Rice Genome

- Genes carry instructions on how organisms grow, develop, and function
- 40,000+ genes in rice

Genes are made of DNA 800 million bits of DNA information in rice ger

Genes are aligned on chromosomes 24 chromosomes in rice

BUT

Which of these 800 million bits of DNA are important to look at ?

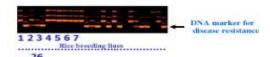
- too costly to look at them all

Must identify high priority genes

- control economically valuable traits
 can map chromosomal location

Develop DNA markers for valuable traits

- Markers are DNA sequence tags readily monitored by lab analysis
 Located near gene controlling trait

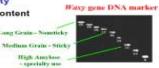

Marker Assisted Selection

- Markers indicate presence of valuable genes
- Increases efficiency of selection
 <u>Does not</u> replace traditional breeding methods
 Helps breeders combine valuable traits into new
- rice cultivars

DNA Marker technology

Presence of DNA marker is associated with presence of important trait

Traits tagged with DNA markers



Disease resistance

- Blast disease: 5 genes
- Sheath blight: 2 genes

Cooking Quality

- Amylose content

- Pasting strength
- Cooking energy
- Grain aroma
- Grain elongation

Agronomic traits

- Cultivar identity/purity: genetic fingerprinting
 - Heading date
- Seedling vigor

